If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=(-9900/(x^2))+21
We move all terms to the left:
10-((-9900/(x^2))+21)=0
Domain of the equation: x^2)+21)!=0We multiply all the terms by the denominator
x!=0/1
x!=0
x∈R
-((-9900+10*x^2)+21)=0
We calculate terms in parentheses: -((-9900+10*x^2)+21), so:We get rid of parentheses
(-9900+10*x^2)+21
We get rid of parentheses
10*x^2-9900+21
We add all the numbers together, and all the variables
10x^2-9879
Back to the equation:
-(10x^2-9879)
-10x^2+9879=0
a = -10; b = 0; c = +9879;
Δ = b2-4ac
Δ = 02-4·(-10)·9879
Δ = 395160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{395160}=\sqrt{4*98790}=\sqrt{4}*\sqrt{98790}=2\sqrt{98790}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{98790}}{2*-10}=\frac{0-2\sqrt{98790}}{-20} =-\frac{2\sqrt{98790}}{-20} =-\frac{\sqrt{98790}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{98790}}{2*-10}=\frac{0+2\sqrt{98790}}{-20} =\frac{2\sqrt{98790}}{-20} =\frac{\sqrt{98790}}{-10} $
| 5=10^4/y^2 | | x3-4x2+13x+50=0 | | x²-5=36x | | x3+4x2+13x+50=0 | | 3b-1=b-4 | | 2s-5=73 | | 10=(9900/(x^2))+21 | | 15^(-3y)=5 | | 859=-91+2b | | -3x-15=-8x+5 | | 859=91-2b | | 2/x-4+1=3/3x-12 | | 59=2x-15 | | 2+1x=4x | | 10/x+3=1 | | 5a+3=26 | | 5/y=12/y-7 | | (x+5)=26 | | (5x-10)=20 | | (7)/(2x-10)=0 | | -5y+16=-4 | | 9x8-4x-5=3x-11 | | -87x-19=56-23x | | 2.2=z-1,1 | | -1/2=-1/3y-2/5 | | 0.3b=0,9 | | 9y2+54y-243=0 | | 3^(x+1)=15 | | 2+7c-4c^=3c+4 | | 3/5x+1=2/3-3x | | –x+8+3x=x-6 | | 12x+3=72 |